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Vacuum energy in smooth background fields 
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Abstran We consider the ground-state en- of a scalar field in the background of a general 
potential which depends on one mordinate. We mnsider a general expression following from 
the analytical properties of the one-dimensional scattering matrix. We show that reflections give 
a positive and bound states a negative contribution to the ground-state energy and we calculate 
explicitly two simple examples, the square-well potential and a piecewise oscillatory pomtial, 
We demonstrate our formulae by an easy rederivation of the inass of the kink. 

1. Introduction 

The ground-state energy is the response of the vacuum to some external conditions or 
background fields. The most popular example is the Casimir effect. Important applications 
arise for spaces with non-trivial topologies, especially in connection with spontaneous 
compactification, within external gravitational fields, in the bag model and other areas. 
Sharp boundary conditions are often a good approximation of a physical situation. However, 
there is an interest in calculating the ground-state energy in cases with smooth background 
fields, too. Possible applications include non-ideal boundaries, general background fields 
and mebics and others. Special interest comes from classical solutions of field equations like 
solitons. which can be considered as smooth background fields when calculating quantum 
fluctuations around them. 

The calculation of the ground-state energy is quite easy and powerful methods-the zeta 
function method [ 11 and the heat kernel expansion, for instance-are known for a variety of 
different boundary conditions and topologies, and also in constant background fields. There 
is a full understanding of the renormalization. However, the calculation of the bound-state 
energy in general background fields is still a difficult task. In the general case one is left 
with perturbative expansions with respect to the background field or with respect to its 
derivatives. 

The aim of the present paper is to make a step forward in the investigation of the 
ground-state energy in a general background field @ ( x ) .  For this reason we consider the 
effective potentialt 

verr = ;TI log ( o -mZ - v (x)) (1) 
in the external potential V ( x )  = A ' @ ( X ) ~ .  Then the problem is to find the specmm of 
this operator. For a time-independent potential V ( x )  this is equivalent to a non-relativistic 
Schrodinger equation, which is a well investigated object. Therefore, it is natural to adopt 

t Usually this term is used in the wse of a constant background field. It results in the one-loop contribution to 
the effective action rp] = Jdr (-V.o). 
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156 M Bordag 

these results. There are several attempts to do so in literature. For instance this idea has 
been proposed in [2] and recently in [3]. Also, the expression of the effective potential as 
a frequency s m  over the mode density or the scattering phase shift is commonly used (see 
[4] or recently 161). Actual interest is in connection with chiral fields [5] and the evolution 
of bubble walls [7]. 

In the present paper we restrict ourself to the case when V(x) depends on one coordinate 
only and decreases as x + 00 so that l-”, IV(x)l(l + [ X I ) &  is finite. This case is the 
simplest one. It is generic in ( I  + 1) dimensions and it serves as a model in (3 + 1) 
dimensions. Using well known properties of the S-matrix of the corresponding non- 
relativistic Schrodinger equation we give a closed representation for the effective potential. 
By means of an analytic continuation we obtain a representation which incorporates the 
bound states in a very natural manner and which has an improved convergence. Using 
this representation we consider two simple examples-the square-well potential and a 
piecewise quadratic potential-and calculate the ground-state energy numerically. A 
different representation is obtained in using the analytical properties which allow for a 
general conclusion concerning the sign of the effective potential. An explicit calculation is 
possible for all reflectionless potentials. We give the corresponding formulae. We apply 
them to the kink model in (1 + 1) dimensions and rederive the corresponding result [ll].  

The case of a potential depending on one coordinate which is considered here, is 
of restricted interest. The next step will be the extension of this method to a spherical 
symmeiic potential, for instance. 

2. Mode summation and analytic continuation 

For its renormalization the effective potential requires imbedding into an external system. 
In order to have a concrete model we consider the Lagrange density 

L =‘$Q(o - M? - A@) Q +  ;‘p (0 --m2 - A ’ Q ~ )  ‘p. (2) 
It can be thought of as the result of the expansion of the action around a classical 
solution. The field 0 should be considered as a classical background field depending 
on one coordinate. By means of 

(3) 2 V(XI)  = A’Q 

it defines the potential in (1) for the field ~ ( x ) ,  which should be quantized in the usual way. 
The energy density per unit area of the plane perpendicular to XI is given by 

E = f V, + $M2Vi + AVz + Vet (4) 

S-”,&I ((a/%q)Q(x,))’, VI = f”,d.rl (Q(X1) ) ’  and 
drl ( Q ( X ~ ) ) ~ .  The effective potential Vefi is given by (l), and a regularization is 

with the following notation: V, 

provided. We use the regularization known from the zeta function method 

m 
v2 = J-, 

The parameter p has the dimension of a mass and appears in order to adjust the dimensions. 
Instead of the effective potential one can use the ground-state energy (for a detailed 

discussion see I 121) 

Eo = 2 / 4 (2n) ” J m ( l - l r ) p z r  (6) 

with s to zero in the end. 
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The system has to be considered within a large box -L < X I  < L because EO as well 
as Vea contain a contribution which is proportional to L. It appears as a consequence of the 
translational invariance which is unbroken in the case when the potential V ( x )  is absent. 
Therefore, that contribution is independent on V ( x )  and can be dropped. The corresponding 
Schriidinger equation reads 

For -L < X I  < L, the eigenvalues k + on are discrete. 
Because the potential depends on one coordinate only, after integration over the momenta 

corresponding to the directions with unbroken translational invariance, the effective potential 
can be written in the form 

The frequency sum in this expression is the essential quantity to be calculated. It is known 
to have a single pole at s = 0 

where E-1 is the residuum and ZO is the regular part. 
Using this, the effective potential takes the form 

A similar calculation yields for the ground-state energy 

Eo=-------(?+Inp)--+O(s) 1 c-1 c-1 ] CO 
s 12rr 6n 12n 

The renormalization will be discussed later on. In order to calculate the frequency 
sum (9) we use the following well known properties of the onedimensional Schrodinger 
equation. Under the asymption of a sufficiently quickly decreasing potential V ( x )  the two 
independent solutions can be chosen to have the asymptotics 

i" .+-- e'" + s12 e-''' @I 2- SII e 
(12) 

The S-mahix S = (sij) is unitary. The coefficient s l j ( k )  is a meromorphic function 
of k with possibly a finite number of simple poles on the upper half of the imaginary axis 
at k = iK, where K, are the corresponding bound-state energies. The reflection and the 
transmission coefficients are given by T ( k )  = ls1l(k)l2 and R ( k )  = lsIz(k)lZ, respectively. 
Obviously, 1 = R + T holds. 

At x = iL we impose Dirichlet boundaq conditions on @ ( x ) .  Other conditions could 
be chosen as well, the difference between distinct choices can be shown to be independent 
for the potential. 

@2 x:m sz1 e'& + e-'& . -ux 
@Z 2, szz e 

Under these conditions, the eigenvalues on are solutions of the equations 

(sI1 rt sZI)eiKL rt e-ikL - - 0  
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These conditions correspond to the linear combinations *I + @?, which also form an 
independent set of solutions. Now, we express the sum (9) in the form 

+l 2 (kZ+m2) 3/2-.< - l n [ ( ( s ~ ~  a - s z ~ ) e ~ ' ~ - e - ~ ' ~ )  
ak 

x ((SI! +s21)eikL +e-ikL)] (13) 
where the integration path y goes from 03 above the real axis to 0 and further below the real 
axis from 0 to 03 so that the points k =U,, > 0 (which are poles of the integrand) are inside. 
In the right-hand side of this formula. the sum corresponds to the bound states k = ire. and 
the integral corresponds to the contribution of the continuous part of the spectrum in the 
limit L + 03. 

To perform the limit L + 03 we consider the upper half part of y .  By means of 
k + k + i6 (E > 0) we have 

In[((sll -s21)eikL-e-lhL)((~11 + ~ ? I ) e ~ ~ ~ + e - ~ ' ~ ) ]  = - ~ i k ~ + ~ ~ ~ - i n + o ( e - ~ ~ ) .  

For the lower half part we note k -+ k - ic and have 

In[((sjl  -s21)eikL -e-ihL) ((SI] +s21)eikL+e-'L)] 
= 2ikL + 26L + In (s:] - s:,) + O(e-fL). 

In the limit L + a3 we obtiin up to exponentially small contributions 

The second term in the right-hand side is the contribution, which is independent on V ( x )  
and which is proportional to L. It will be dropped. Now, the integration path can be turned 
to the imaginary axis: k + ik. Using the relation 

which is a consequence of the unitarLty of S and where S(k) is the scattering phase, we 
obtain 

up to terms independent of V ( x ) .  The contribution from the bound states has been cancelled 
by the extra contributions appearing from the poles at k = iK. when turning the integration 
contour to the imaginary axis. This formula connects the ground-state energy with the 
S-matrix taken at imaginary momentum k .  It is remarkable that the contributions of the 
bound states are not here explicitly. They are implicitly present, of course. 

Now, let us discuss the renormalization. As was shown in IS], the function logsll has 
the following asymptotics as k -+ 03: 

h'V] 
2k (Zk)3 

logsll(ik) = -- + - + ~ ( k - ~ )  
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with V I  and VZ defined below (4). Inserting these two terms into the representation (15) 
of the frequency sum, we can calculate the resulting residuum at s = 0 and the regular 
part according to (9). We denote them by and XT, respectively. Now, the effective 
potentid vee splits into two parts vefi = v$ + v:.~ with 

Inserting the last line into (4) for the energy of the whole system and using (3) it is clear 
that these terms perform a renormalization of the mass M and the coupling I of the field 
4: 

This renormalization is a finite one. The reason is the use of the zeta function, which yields 
finite results. When using (6) for the ground-state energy instead, the same calculation can 
be performed. In that case, the renormalization reads 

It is infinite, as is usual in quantum field theory. Also, from the general theory 
of renormalization, these coefficients can be connected with the renormalization group 
functions-especially with the beta function, of course. Notice that in this case there is 
no renormalization of the kinetic term, i.e. of that term which contains derivatives of the 
field 4. 

Substracting the asymptotic terms (16) from logslI(ik) in (E) ,  the integral becomes 
finite for s = 0. The corresponding contribution to the effective potential reads 

A' VI  A" V2 
dk (kz - m z ) 3 ' 2 2  logsll(ik) + - - - 

a k  2k 8k3 

3. Two simple examples 

In this section we apply the above formulae to two simple examples for the potential V ( x ) ,  
namely the square-well potentialt 

and the piecewise oscillatory potential 

Let us first consider the square-well potential Vss (20). The contribution V, to the 
energy, which results from the gradient of the field 4, is infinite; the other two parts are 
simply VI = L VO and V2 = L V:. Therefore, the total energy is not a meaningful quantity, 
although the calculated effective potential and the renormalization can be carried out. 

t In this section L denotes the (finile) size of the potential V ( x ) ,  not to be confused with L in section 2 which 
was used as a regulator. 
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The S-matrix for this potential is well known and it reads (already after the rotation to 
the imaginw axis k -+ ik) 

with q = m. This expression can be inserted into Vsb (19). After some simple 
calculations we obtain 

It is represented in figure 1 for several values of the parameters L and Vo. The first term 
within this expression is proportional to L, the ‘length of the potential well’. Its sign 
depends on Vo/m2 and takes both values, positive and negative. The second part depends 
on Vo/mZ only. The tbiid part depends on all parameters. For large L it is proportional to 
e x p ( - 4 m L ) .  The convergence of the k-integral is a consequence of the subtractions 
performed. In the second term the convergence of the integral is by powers of k .  In the 
third term, the most complicated, the integrand falls off exponentially as k + CO and the 
integral converges very easily. This is a result of rotating the integration contour in V E ~  
(15). 

The representation (23) is valid for both signs of VO, i.e. for repulsive as well as for 
attractive potentials V ( x , ) .  In the last case, there is always at least one bound state. 
Its contribution to the frequency sum is taken into account by (19) automatically. In 

t 
1 0.002 

I . .  . 1 > 
0.5 1 1.5 V L  

Vo.4.7 

V g - 0 . 9 9  

0.001 

-0.001 \ 
Figure 1. The effective potentid for ihe square-well potential as function of the length L of the 
well for some values of its height Va. 
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the cme VO < -m c 0, the potential is over-critical with respect to particle creation. 
Correspondingly, V:gb acquires an imaginary part. 

Now we turn to the piecewise oscillatory potential V,, (21). The scattering matrix can 
be obtained in the following way. We consider the solution of the Schrijdinger equation (7) 

eikr + s12e-ih x c - L  
(Y,u(-x)+p1u(-x)  -L < x  ( 0  
w ( x )  + BzNx) O < x < L  I s] 1 e& L C X  

*(XI = 

where u(x) and u(x) are two independent solutions in the interval 0 < x < L ,  and (Y and 
fl  are constants. This function and its first derivative have to be continuous at x = 0 and 
x = k L .  From these conditions, one obtains 

with W = MU' - U'IJ and where the abbreviations P = u'(L) - iku(L) and Q = 
u'(L) - ik v(L)  are used. These solutions can be expressed by hypergeometric functions. 
We choose the following combinations 191: 

with the natation 

and 

with (Y 

these formulae, we obtain 
+a + 4. From [9] we find W = - d w / / r ( a  + i) in this case. Using 

and 

with L = and I F'l(a, b; z )  being the derivative of the hypergeometric function 
with respect to z. These formulae are sufficient to calculate slt(k),  and the rotation k + ik 
can also be performed. Before carrying out the calculation of the effective potential the 
subtractions have to be performed. From equation (21) we calculate VI = $VoL and 
Vz = iV:L, Inserting all of these into the effective potential Vl;b (equation (19)). the 
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Vert 

0.c 

0 C 

0.W6 - 

L 

-0.002 . 

L 
2 V " 4  

-0.002 . 

Figure 2. The effective potential for the piecewise oscillatory potential V,  as function of the 
ienghl L for some values of the height Vo form = 1. 

integral is finite and can be calculated numerically for any values of the parameters. The 
result is represented in figure 2 as a function of L for several values of the depth VO. 
For negative VO, the potential is attractive. In that case one has to perform the formal 
substitution a + -ia and -+ & in the above formulae. For sufficiently large 
values of Vo, the potential becomes over-critical and the effective potential takes complex 
values. 

4. Analytical properties and reflectionless potentials 

Consider the Schrodingerequation (7). The set [R(k), j3". ~ " ( n  = 0, I , .  ,., N ) ) ,  where R ( k )  
is the reflection coefficient, the K, are the bound-state energies, the are some numbers 
and N is the number of bound states, is called scattering data. The potential V ( x )  can be 
restored from the scattering data uniquely. In general, by means of its analytic properties, 
the coefficient SI] ( k )  can be represented in the form 

where E -t +O and R ( q )  = 1 - Is,,(q)(2 is the reflection coefficient and the sum goes over 
the bound states. The continuation to the positive imaginary axis, i.e. k + ik yields 
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where s I i ( - k )  = s i l ( k )  has been used. In order to perform the renormalization we use the 
formulae [8] 

~ 

and obtain from (19) 

k + K .  

k - K ,  

This formula can be simplified: 

- - E [ ( m 2 - K n )  I N  2 312 sin , -1  Kn - + j . ~ n - ~ . m 2 ]  4 3 
m 6 x 2  "4 

From this formula it follows that the bound states give a negative conhibution to the 
effective potential whereas the integral in the right-hand side of this formula, which results 
from the reflections (it vanishes for lslll = 1, i.e. for a vanishing reflection coefficient), 
gives a positive contribution (note lsll I < 1 and the expressions in both figure brackets in 
(29) are non-negative). This conclusion is different from what one would expect from the 
known fact, that a repulsive (resp. attractive) potential yields a negative (resp. positive) 
phase shift. 

In that case we have 
Isi~(k)l = 1 and sl l (k)  is a rational function 

An important special case are the reflectionless potentials. 

The potential V ( x )  can be restored from the scattering data explicitly 

(31) 
d2 
dx2 

V ( x )  = -2-1ogdetA 

where the matrix A is 

The effective potential is in this case given by the second term in right-hand side of (29): 

It is completely negative. The contribution of one bound state to this formula is shown in 
figure 3(a). 
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-0.001 

-0.002 

-0.003 

-0.004 

-0.005 

-0.05 1 -0.1 

-0.15 

-0.2 

-0.22 

-0.3 

Figure 3. (a )  The conhibution of one bound state to the effective potential ior a reflectionless 
potential in the (3+ I)-dimensional case. (b)  The contribution of one bound state to lhe efiective 
potential for a reflectionless potential in the ( I  + I)-dimensional case. 

5. The kink 

In this section we demonstrate how our method reproduces the well known correction to 
the mass of the kink. For this purpose we need to rewrite the basic formulae in (1 + 1) 
dimensions. The formulae (2)-(5) remain unchanged, and instead of (8) we obtain 

Expression (9) is independent on the dimension and (IO) becomes 

ver = (I  + In ( 4 ~ ) )  - 4 EO. 
The renormalization has been changed in that sense, so that only one subtraction is necessary 
and only the mass term is renormalized. For the effective potential we obtain 

In the case of a reflectionless potential we note (30) and this integral can be calculated. We 
obtain for the effective potential 

This function is very close to that in the (3+ 1)-dimensional case. It is shown in figure 3(b). 
In this form it was first derived in [IO] in connection with static solitons. 

These formulae can easily be applied to the kink. It is a static solution Oc, of the scalar 
Q4 theory in the case of a mass term with 'wrong sign' 

S ( 0 ) = ~ ~ d x ( ( ~ ) Z + M z ~ z - ~ h 0 4 ) .  2 
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It reads OE1(x) = ( M / f i )  tanh(mx/&) By means of a expansion of the action around the 
classical solution 4 = 4c~ + p, i.e. 

we obtain the Lagrangian (2) with m = dlcr and V(x1)  = 3MZ/cosh2(mrl/&). This is 
the well known Eckhart potential. It has two bound states K I  = M / &  and KZ = d M .  
Inserting these values into (32) we obtain immediately 

in agreement with [ 111 
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